五月激情天,日一区二区三区,国产福利在线永久视频,2020国产成人精品视频网站,国产网站在线免费观看,善良的嫂子3在线观看

樹人論文網(wǎng)一個(gè)專業(yè)的學(xué)術(shù)咨詢網(wǎng)站!!!
樹人論文網(wǎng)
學(xué)術(shù)咨詢服務(wù)

CHAOS SOLITONS & FRACTALS

來源: 樹人論文網(wǎng) 瀏覽次數(shù):451次
創(chuàng)刊時(shí)間:1991
所屬分區(qū):1區(qū)
周期:Semimonthly
ISSN:0960-0779
影響因子:3.064
是否開源:No
年文章量:400
錄用比:容易
學(xué)科方向:數(shù)學(xué)跨學(xué)科應(yīng)用
研究方向:物理
通訊地址:PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND, OX5 1GB
官網(wǎng)地址:http://www.journals.elsevier.com/chaos-solitons-and-fractals/
投稿地址:http://ees.elsevier.com/chaos/default.asp?acw=3a54-12
網(wǎng)友分享經(jīng)驗(yàn):約10.5個(gè)月

CHAOS SOLITONS & FRACTALS雜志中文介紹

混沌,孤獨(dú)與分形有一個(gè)開放的鏡像期刊混沌,孤獨(dú)與分形:X,共享相同的目標(biāo)和范圍,編輯團(tuán)隊(duì),提交系統(tǒng)和嚴(yán)格的同行審查。《混沌,孤子與分形》雜志旨在成為非線性科學(xué)跨學(xué)科領(lǐng)域的領(lǐng)先期刊。它鼓勵(lì)提交關(guān)于下列主題基本原理的文章:動力學(xué);物理學(xué)中的非平衡過程;復(fù)雜物質(zhì)和網(wǎng)絡(luò);計(jì)算生物學(xué);波動和隨機(jī)過程;自組織;社會現(xiàn)象;技術(shù)。本刊只接受主要學(xué)科范圍在上述目標(biāo)范圍內(nèi)的論文。特別請注意以下事項(xiàng):為了被接受,更多數(shù)學(xué)性質(zhì)的手稿至少應(yīng)該嘗試與物理洞察力或新的定性特征相聯(lián)系。“孤子”一詞應(yīng)被理解為一個(gè)標(biāo)簽,特別適用于復(fù)雜自然現(xiàn)象中的所有非線性可積系統(tǒng)。這篇論文不應(yīng)該包含一些顯式公式、一些標(biāo)準(zhǔn)解、結(jié)構(gòu)或漸近方法。該雜志感興趣的文章提供了對分形數(shù)學(xué)理論的深刻見解,無論是在理解一般理論中發(fā)揮重要作用,或?qū)σ粋€(gè)重要的特殊應(yīng)用,特別是在復(fù)雜的系統(tǒng)中是深刻的。數(shù)值計(jì)算只應(yīng)有助于發(fā)展的結(jié)果。同樣受歡迎的是發(fā)現(xiàn)了新的分形,這些分形對于重要的應(yīng)用是至關(guān)重要的。主題列表在期刊的分類列表中進(jìn)一步指定。作者被要求在提交作品時(shí)指定匹配的分類。我們鼓勵(lì)作者鏈接到存儲庫中發(fā)布的數(shù)據(jù)或上傳到Mendeley data的數(shù)據(jù)。作者可以提交單獨(dú)的研究元素,簡要地描述他們的數(shù)據(jù)到數(shù)據(jù),軟件到軟件X。

CHAOS SOLITONS & FRACTALS雜志英文介紹

Chaos, Solitons & Fractals has an open access mirror journal Chaos, Solitons & Fractals: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.Chaos, Solitons & Fractals aims to be a leading journal in the interdisciplinary field of Nonlinear Science. It encourages the submission of articles concerning the fundamentals of the following subjects: dynamics; non-equilibrium processes in physics; complex matter and networks; computational biology; fluctuations and random processes; self-organization; social phenomena; technology.The journal can only accept papers whose primary subject area lies within the above Aims & Scope. In particular, please take notice of the following:In order to be acceptable, manuscripts of more mathematical nature should at least attempt a connection to physical insight or new qualitative features. The word "Solitons" should be understood as a label especially extended to all nonlinear integrable systems in complex natural phenomena. The paper should not bear on some explicit formulae, some standard solutions, constructions, or asymptotic methods.The journal is interested in articles providing strong insights in the mathematical theory of fractals that play an important role either in understanding the general theory or are profound for an important particular application, especially in complex systems. Numerical computations should only assist the developed results. Also welcome are the discovery of new fractals that are crucial for important applications.The subject listing is specified further in the journal's classification list. Authors are required to specify matching classifications upon submission of their work.Authors are encouraged to link to their data posted in a repository or uploaded to Mendeley Data.Authors can submit separate research elements describing their data to Data in Brief and software to Software X.

CHAOS SOLITONS & FRACTALS影響因子

主站蜘蛛池模板: 四虎免费看 | 国产一区国产二区国产三区 | 99久久免费精品视频 | 可以免费看的毛片 | 欧美日韩国产在线播放 | 久久99国产精品 | 欧美高清强视频 | 爱爱电影院| 久久国产成人精品 | 日本美女老师 | 99精品全国免费7观看视频 | 狠狠色做五月深爱婷婷 | 久久亚洲精品玖玖玖玖 | 国产精品久久久久久一区二区三区 | 久久99精品久久久久久园产越南 | 福利视频专区 | 欧美日韩国产在线一区 | 华丽的外出手机在线观看 | 丁香花在线影院在线播放 | 国产综合精品 | 男女视频免费在线观看 | 欧美激情精品久久久久久不卡 | 国产毛片在线 | 99re热视频| 精品啪啪 | 免费二级c片在线观看a | 精品亚洲成a人片在线观看 精品小视频在线 | 国产福利在线永久视频下载 | 97精品高清一区二区三区 | 欧美特级午夜一区二区三区 | 精品久久综合一区二区 | 日韩一级欧美一级一级国产 | 青青草国产免费久久久91 | 蜜桃视频一区二区三区 | 免费大学生国产在线观看p 免费成人小视频 | 成人精品免费网站 | 体验区试看120秒 | 天堂8在线官网 | 2021人人莫人人擦人人看 | 欧美中文字幕在线观看 | 日本成人久久 |